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The large eddy simulation (LES) based on subgrid modeling has been applied to turbulent 
natural convection in concentric horizontal annuli with a heated inner and a cooled outer 
cylinder. The unsteady three-dimensional Boussinesq approximated equations were 
solved using the explicit finite-difference method. The highest Rayleigh number solution 
obtained was 1.18 × 10 e. The time-averaged temperature distributions and the mean 
Nusselt numbers obtained here are in reasonable agreement with the experimental results 
of other researchers. The effects of the number of grid cells and the Smagorinsky constant 
on the time-averaged temperature distrib.utions and turbulence properties are also 
discussed. 
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I n t r o d u c t i o n  

Natural convection in concentric horizontal cylindrical 
annuli kept at constant surface temperatures is a classical 
laboratory problem and has been studied by many researchers 
experimentally and analytically because of its interesting flow 
patterns and of its engineering applications in technologies such 
as solar concentrators, inert-gas insulated electrical cables, and 
horizontal pressurized heavy water reactors (PHWRs). The 
previous research was comprehensively reviewed by Gebhart 
et al. (1988) and Bishop and McLeod (1989). The problem has 
been studied experimentally by Beckmann (1931), Kraussold 
(1934), Liu et al. (1961), Lis (1966), and Grigull and Hauf (1966). 
There have been several correlations presented for the average 
heat transfer between cylinders. Several researchers have also 
presented the temperature distributions and the qualitative 
descriptions of principally laminar flow using photographs 
and optical methods. Powe et al. (1969) have presented the 
detailed descriptions and the photographs of stable laminar 
and oscillating laminar flow in air. Kuehn and Goldstein 
(1978) have obtained the temperature distributions and the 
local heat transfer coefficients by optical methods for 
nitrogen for Rayleigh numbers based on gap width up to 
8 x l0 T. More recently Bishop (1988) has presented the 
time-averaged temperature distributions and the overall 
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heat transfer rates for Rayleigh numbers up to 1.8 x 109, a 
constant Prandtl number of 0.688, and a diameter ratio of 
3.36. McLeod and Bishop (1989) have performed an 
experimental study of the natural convection of helium 
between isothermal concentric cylinders at cryogenic tempera- 
tures and have presented the overall heat transfer rates and the 
time-averaged temperature distributions for Rayleigh numbers 
of 8 x 106-2 x 109 and expansion numbers of 0.25-1.0. On the 
other hand, most of the analytical works were limited to 
Rayleigh numbers less than around 105. Actually, the only 
results reported in the literature for Rayleigh numbers greater 
than 5 x 105 are from Farouk and Guceri (1982) and Fukuda 
et al. (1990). Farouk and Guceri (1982) used the high-Reynolds- 
number k-e model for the two-dimensional (2-D) turbulent 
natural convection in concentric horizontal annuli for Rayleigh 
numbers up to 107. 

In a previous paper (Fukuda et al., 1990), we have studied 
the validity and the limit of the numerical simulation using 
no turbulence model for natural convection in concentric 
horizontal annuli at moderate Rayleigh numbers up to 
6.0 x 105. It was found that the numerical simulation using 
no turbulence model replicated the time-averaged tempera- 
ture distributions and the mean Nusselt number satis- 
factorily except for the cases of relatively high Rayleigh 
numbers, where it tended toward too large turbulence levels. 
Due to the limitation of the number of grid cells for the 
finite-difference method, it was important to evaluate the 
effect of the number of grid cells and their width to confirm 
the validity of the results. Also, at higher Rayleigh numbers, 
it seemed to be, after all, inevitable to include some model 
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for the subgrid scale turbulent Reynolds stress and the 
corresponding turbulent heat flux. 

Therefore, in the present study we have tested the 
applicability of the LES based on subgrid modeling to 
natural convection in concentric horizontal annuli for 
Rayleigh numbers up to 1.18 x 109. To this end, we have 
evaluated the effect of the number of grid cells and the 
Smagorinsky constant on the time-averaged temperature 
distributions and the turbulence properties by comparing 
the results from the numerical simulation using no turbulence 
model and the experimental results of other researchers. 

M o d e l  e q u a t i o n s  a n d  s o l u t i o n  p r o c e d u r e  

LES f low equations 

The configuration to be studied is shown in Figure 1. 
Concentric horizontal cylindrical annuli are heated on the 
inner cylinder surface and cooled on the outer one. The LES 
equations are formed by filtering the continuity, Boussinesq- 
approximated Navier-Stokes and energy equations with the 
well-known Top-Hat filter (Moin and Kim 1982). Here, the 
higher-order correlation terms or the Leonard and the 
cross-terms are neglected. These equations are put into 
dimensionless form using the scale L for length, L2/ct for 
time, ot/L for velocity, p(ot/L) 2 for pressure, and (T t -- T2) for 
temperature. The resultant dimensionless equations of mass, 
motion, and energy are as follows. 
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In Equations la-lc,  u~, p, and T are the dimensionless 
velocity, pressure, and temperature, respectively. (-) and (') 
are a filtered or grid scale (GS) value and a subgrid scale 
(SGS) value, respectively, e is a unit vector of the direction 
of the gravitational force, (cos q~, - s i n  ~b, 0). And Pr and RaL 
are the molecular Prandtl number and the Rayleigh number 
based on the gap width L, respectively. 

Mode l ing  o f  the subgr id  correlat ion terms 

From a dimensional analysis and the production (including 
a buoyancy contribution)-dissipation equilibrium arguments, 
the SGS Reynolds stress term and the SGS turbulent 
heat flux terms are modeled. We assume the subgrid 
turbulence to be isotropic, so the eddy viscosity/conductiv- 
ity approximation is applied. Here, the following form, first 
presented by Smagorinsky (1963) and modified by Eidson 
(1985) is used: 

1~; ' ' = - - K M ~  (2a) Uibl j - -  ~ i j U k U k  

~ T  

u' i T'  = - K T  ~xi (2b) 

,.q = 2(SiiSij) 1/2 (2c) 

and 

_ =  t2d) 
Sis 2 \Ox j  + Oxi} 

where K u and Kr  are the eddy viscosity/conductivity, 
respectively. And KM is defined by the following equation 
(including the buoyancy-production correction): 

(CsAf) 2 ( 1 OCy/2 K u  
KM _ 21/2 g2 __ --Prt PrRaLe ~xj} ' K T  -- Pr, (3) 

where Af, Cs, and Pr t are the filter width, the Smagorinsky 
constant, and the SGS turbulent Prandtl number, respectively. 
The values of 1/3-1/1.195 have been chosen in the previous 
numerical studies. A value of 1/2.5 was selected for the 
numerical study of the turbulent Rayleigh-Benard problem 
(Eidson 1985). Here, a value of 1/1.2 proposed by Yoshizawa 
(1983) is used for Prt. The value of Cs will be discussed later. 

In order to make Equation 3 compatible with the non- 
slip boundary condition, the value of Af is multiplied 
to the Van Driest exponential damping function fd = 
1 -- exp (--y+/25), where y÷ is the distance from the nearest 
wall in dimensionless wall units (Moin and Kim 1982; Tsai 
and Leslie 1990). 

The SGS turbulent energy EsG s is given by 

Es6 s = K ~ / ( C k A f )  2 (4) 

where C k = 0.09 with the assumption of homogeneous 
turbulence at subgrid levels (Lilly 1966). 

Boundary  condi t ions 

The above equations are subject to the following boundary 
conditions: 

u, = u 4, = u= = 0 (r = R1, R2) 

~r = 1 ( r  = R1)  

T = 0 (r = R2) 

@ =  _ p r O d  (0~ '~  1 c ~ ( d ~ ' ~ _  
+ P r R a T  cos 

(r = R 1, R2) 

~(r, O, z) = ¢(r, 2n, z) 

~(r, ~b, O) = ¢(r, ~b, 2) 
m 

(where ¢ = ~,  T, p-) 

(5) 

which represent the nonslip boundary condition on the 
cylinder surfaces and the periodic boundary condition in 
the z-direction. 

Solut ion procedure 

The explicit finite-difference scheme as in Williams (1969) 
and Grotzbach (1982) is used. The second-order accurate 
Adams-Bashforth scheme is used for temporal derivatives, 
and the second-order accurate central differencing is used 
for spatial ones. Uniform grid lengths are chosen in the 
~- and z-directions and nonuniform in the r-direction. The 
dependent variables are staggered on the numerical grid. 
The Poisson equation for the pressure is solved by a discrete 
Fourier transform (DFT) method. The time step At is taken 
in the range of 5.0 × 10 -a < At < 1.0 x 10 -s. 

C a s e  s p e c i f i c a t i o n s  

Several numerical simulations with different Rayleigh numbers, 
different Prandtl numbers, different aspect ratios, different 
grids, different periodicity lengths, and different Smagorinsky 
constants were carried out (Table 1). Cases 1--4, 5, 6, 7, and 
8-12 were chosen for direct comparison with the experimental 
results of Kuehn and Goldstein (1978), Bishop (1988), Liu et 
al. (1961), Kuehn and Goldstein (1978), and McLeod and 
Bishop (1989), respectively. For Cases 1-6 and 12, a value of 
C s = 0 was used. For the other cases, nonzero values of Cs 

Table  1 Case specifications 

Case Ra L Pr R2/ R1 Nr x N~ × N z 2/ L At C s Reference 

1 2.51 x 10 s 0.731 2.60 24 x 96 × 32 2.8 5.0 x 10 -s 0.0 Kuehn et al. (1978) 
2 2.51 × 106 0.731 2.60 36 x 96 x 32 2.8 2.5 x 10 -6 0.0 Kuehn et al. (1978) 
3 2.51 x 10 s 0.731 2.60 36 x 96 × 64 2.8 2.5 × 10 -6 0.0 Kuehn et al. (1978) 
4 2.51 × 106 0.731 2.60 36 x 96 × 64 5.6 2.5 × 10 -s 0.0 Kuehn et al. (1978) 
5 1.31 x 107 0.688 3.36 36 x 96 × 64 2.8 2.5 x 10 -6 0.0 Bishop (1988)  
6 1.72 x 107 7.830 2.50 36 x 96 × 64 2.8 2.5 x 10 -6 0.0 Liu et al. (1961) 
7 2.51 x 1 0  6 0.731 2.60 36 x 96 × 64 5.6 2.5 x 10 -6 0.1 Kuehn et al. (1978) 
8 1.22 × 107 0.688 4,85 36 x 96 × 64 5.6 2.5 × 10 -e 0.1 McLeod et al. (1989)  
9 1.35 × 108 0.688 4.85 36 x 96 x 64 5.6 5.0 × 10 -7 0.1 McLeod et al. (1989)  

10 1.18 x 106 0.688 4.85 36 × 96 x 64 5.6 2.5 × 10 -7  0.1 McLeod et al. (1989)  
11 1.18 x 109 0.688 4.85 36 x 96 × 64 5.6 2.5 × 10 -7  0.2 McLeod et al. (1989)  
12 1.18 × 109 0,688 4.85 36 × 96 × 64 5.6 2.5 x 10 -6  0.0 McLeod et al. (1989)  
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were used. For Cases 1-3, with the same other parameters, 
different grids were used. Cases 3 and 4 differ from each other 
in their periodicity length. The Rayleigh numbers specified for 
Cases 5 and 6 are higher than those of Cases 1-4. The Rayleigh 
numbers specified for Cases 10-12 are also higher than those 
of Cases 7-9. Cases 10-12, which are different in the value of 
Cs, were taken to confirm the high-Rayleigh-number 
simulation of this problem. 

C o m p a r i s o n  o f  r e s u l t s  a n d  d i s c u s s i o n  

Starting from the solution obtained for a smaller Rayleigh 
number, the governing equations were integrated forward 
in time until the numerical solutions reached statistically 
steady states. The steady states were also identified by 
approximate agreement of both mean Nusselt numbers at 
the outer and inner cylinder surfaces, expressed as follows: 

lfo'fo!" Nu, = ~ R, In (R,/R2)(t3Y~ d4) dz 
\ ~r ],=., 

1 fo;o" (R,/R2)(dT~ d~ dz (6) Nu 2 = ~ R 2 In ~k~r/r=R2 

Next, in order to obtain better statistical samples, the 
governing equations were further integrated in time. For 
each case, the simulations were considered to be complete 
when the time-averaged turbulence quantities became sta- 
tionary. Sixty samples storaged per 60 time steps were 
used for time averaging. In order to compare the results 
with those of the previous laboratory experiments, the 
results given in all figures represent the axially averaged 
values. Both mean Nusselt numbers at the outer and inner 
cylinder surfaces were within the relative error of 1 percent, 
excluding the simulation with the highest Rayleigh number 
(1.3 percent for Case 10), showing a good heat balance 
between both cylinders. The CPU time consumed on a 
FACOM VP200 was about 0.7 seconds per time step, which 
resulted in a total CPU time of 12.5 hours, for example, for 
Case 10. 

Comparison between the simulations using no 
turbulence model  and experimental results 

First, the cases of C s = 0 (corresponding to the numerical 
simulation using no turbulence model) are considered, and 
the results are compared with experimental results (Cases 
1-6). In Figure 2 are shown the time-averaged temperature 
distributions compared with the experimental results. For 
Case 3, good agreement is obtained, but for Case 6 there 
are small discrepancies. Since the temperature difference 
between both cylinders is large in the experiments, Rayleigh 
numbers in the experiments strongly depend on the 
characteristic temperature at which physical properties are 
defined. Bishop (1988), in common with the present paper, 
adopted a volume-averaged temperature as the characteris- 
tic temperature; however, it gives a higher Rayleigh number 
than does the choice of the temperature nearer to the inner 
cylinder surface. Thus, the reason for the discrepancy for 
Case 6 might be twofold; the number of grid cells in the 
simulations using no turbulence model is not enough and/or 
the characteristic temperature to calculate Rayleigh numbers 
should be the one nearer to the inner cylinder surface. 

Effect o f  Smagorinsky constant Cs 

For high Rayleigh numbers, it seems to be necessary to 
introduce a turbulence model for the SOS Reynolds stress 
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Figure 2 Time-averaged temperature distribution by the simula- 
tions using no turbulence model; (a) lines: simulation (Case 3); 
symbols: Kuehn and Goldstein (1978); (b)lines: simulation (Case 
6); symbols: Liu et al. (1961). 

and the SGS turbulent heat flux. In LES it is important to 
choose a value of the Smagorinsky constant Cs appropri- 
ately. Values of this parameter from the representative 
numerical studies as well as the theoretical estimates by Lilly 
(1966) and Yoshizawa (1983) are shown in Table 2, excluding 

T a b l e  2 Values of Cs from several studies 

Values of Cs Reference 

Theory 
0.18-0.22 Lilly (1966) 
0.081 Yoshizawa (1983) 

Isotropic turbulence 
0.21 Kwak (1975) 
0.24 Shaanan (1975) 
0.17-0.19 Clark (1979) 
0.19-0.24 Mansour et al. (1979) 
0.14-O.16 McMillan and Ferziger (1979) 

Channel flow 
0.1 Deardorff (1970) 
0.1 Horiuchi (1982) 
0.065 Moin and Kim (1982) 
0.14 Kaneda and Leslie (1983) 
0.1 Tsai and Leslie (1990) 

Atmospheric convection 
0.21 (unstable case) Deardorff (1972) 
0.13 (neutral case) Deardorff (1972) 
0.14 Schemm and Lipps (1976) 

Rayleigh-Benard convection 
0.21 E i d s o n  ( 1 9 8 5 )  
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the values from the studies of the LES by the volume-averaging 
procedure and the most recent studies. Values of 0.14--0.24 were 
used for the numerical studies of the homogeneous isotropic 
flow, and values of 0.065-0.14 were chosen for the studies of 
the turbulent channel flow. The values of 0.13-0.21 were 
selected for the numerical study of atmospheric convection 
(Deardorff 1972; Schemm and Lipps 1976) and Cs = 0.21 for 
the study of the turbulent Rayleigh-Benard problem (Eidson 
1985). Here, we have examined the effect of varying Cs to 
identify its appropriate value. Figure 3 shows the time-averaged 
1-D energy spectra of the velocity fluctuation in the r-direction 
at r = 0.4. For the case of the highest Rayleigh number 
(=  1.18 x 109), the energy spectra for Cs = 0.1 (Case 10) and 
C s = 0.2 (Case 11) are compared. It is clearly shown that the 
slope of the energy spectrum becomes steeper as C s increases, 
indicating that more energy is dissipated with larger Cs. For  
the case of C s = 0 (Case 12), we could not obtain a steady 
solution even if At is reduced to 1/10 of those for Cases 10 and 
11. The energy spectrum for Case 12 in Figure 3 is an 
instantaneous one, and notable amounts of energy with high 
wave numbers are accumulated at the top of the annulus. Thus, 
the numerical accumulation of energy at high wave numbers 
is the penalty resulting from not using any turbulence 
model; the rate of energy dissipation is controlled by 
changing Cs. 

The time-averaged velocity and the time-averaged tempera- 
ture distributions for Cases 10 and 11 are shown in 
Figure 4. It is found that the effect of C s on the 
time-averaged distributions are relatively small. However, 
the corresponding rms distributions of velocity and tempera- 
ture fluctuations are much affected by changing Cs (see Figure 
5). Thus, by applying the LES technique we may obtain a 
reasonable time-averaged distribution without much con- 
sideration of Cs, which is confirmed later by comparing the 
results with experiments, but the turbulence properties are very 
sensitive to Cs. 

It is found that for the case of C s = 0.1 (Case 10), Eso s is 
only 5-7 percent of EGs and that this small amount of energy 
dissipation avoids the accumulation of energy at high wave 
numbers. On the other hand, when C s = 0 . 2  (Case 11), 
Es~s/E~s attains 8 as its maximum value, which is 
unphysical and seems to be beyond the limit of applicability 
of the LES technique. We thus used 0.1 thereafter. 
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Figure 5 Effect o f  Cs on rms o f  velocity and temperature 
f luc tuat ions by LES; Case 10: Cs = 0.1 ; Case 11 : Cs = 0.2 

Comparison between LES and experimental results 

The time-averaged temperature distributions obtained by 
LES for Cases 8 and 10 are compared with those of 
experiments (McLeod and Bishop 1989) in Figure 6. It is 
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Figure 6 Time-averaged temperature distribution by LES; (a) 
lines: simulation (Case 8); symbols: McLeod and Bishop (1989); 
(b) lines: simulation (Case 10); symbols: McLeod and Bishop 
(1989) 

found that LES predicts the experimental results quite well, 
except for small discrepancies for Case 8, where the 
simulation predicts the lower temperatures at the top of the 
annulus, and in Cases 8 and 10, where the simulations give 
steeper slopes in the boundary layer on the outer cylinder 
surface. 

In Figure 7 are shown rms distributions of temperature 
fluctuations. Discrepancies are rather large, especially near 
the top of the annulus in Case 8. However, by looking closer 
in the figures, it is found that the peak value of the 
fluctuation moves from the core to the inner cylinder surface 
side as the Rayleigh number increases. 

Heat transfer results 

Figure 8 shows the values of the mean Nusselt number Nu~, 
defined as the arithmetic average value of Nul and Nu2, 
derived from the numerical simulations and experimental 
results. The solid line shows the results from the correlation 
equation of Itoh et al, (1970). The values of Num are in good 
agreement with those of other experiments and with the 
correlation equation of Itoh et al. (1970), except for the case 
of the highest Rayleigh number. But the results from 
McLeod and Bishop (1989) are slightly larger than those 
from the present simulations and the correlation equation 
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Figure 7 Rms of temperature fluctuations by LES; (a) lines: 
simulation (Case 8); symbols: McLeod and Bishop (1989); (b) 
lines: simulation (Case 10); symbols: McLeod and Bishop (1989) 
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Figure 8 The mean Nusselt numbers versus Rayleigh number; ©: 
simulations; O: Kuehn and Goldstein (1978); A :  Bishop 
(1988); • :  Liu et al. (1961 ); + : McLeod and Bishop (1989); solid 
line: Itoh et al. (1970)'s corresponding equation 
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of Itoh et al. (1970). Farouk and Guceri  (1982) have 
presented turbulent flow results for Rayleigh numbers of 
106-107 , but did not report the values of Nu  m . The need for 
further work on natural convection heat transfer of 
extremely high Rayleigh numbers is evident. 

C o n c l u s i o n  

Numerical  simulations of turbulent natural convection in 
concentric horizontal annuli have been conducted using the 
LES technique, and the results have been compared with 
several laboratory experiments. The overall results seem to 
demonstrate that the LES technique can be used to predict 
this problem. The following are the major  observations and 
conclusions of this study. 

(1) For  the numerical simulations using no turbulence 
model, t ime-averaged temperature distributions are reason- 
ably predicted, provided that the number of grid 
cells is sufficient; 

(2) because of the restriction on the number of grid cells, 
there is a limit in the Rayleigh number beyond which 
the numerical simulations using no turbulence model are 
not valid or the calculation itself is not possible; 

(3) the additional terms associated with the subgrid scale 
model  in LES dissipate energy at high wave numbers, 
and the amount  of dissipation depends strongly on the 
Smagorinsky constant, Cs; and 

(4) the values of mean Nusselt number are in good 
agreement with those of the experiments of other 
researchers and of the correlation equation of Itoh et al. 
(1970), except for the case of the highest Rayleigh 
number. But the simulation slightly underpredicts the 
mean Nusselt number compared with McLeod and 
Bishop (1989). 
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